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ABSTRACT: A closed system of equations for the
anisotropic nature of a flow is constructed on

the assumption that the length of the mixing
length is not short compared with the character-
istic dimension of the flow. It is taken that the
velocity pulsation field can be characterized by

a multipoint distribution function satisfying the
equation of continuity. This results in equations
for single-point and double-point distribution
functions. ’

A number of suggestions are advanced dealing with the nature of the
forces acting on the turbulent formation ("mole' or vortex) in the flow
with the correlation time between the random force and the scale and the
intensity of the turbulence, with the expression of the integral in the equa-
tion for the single-point distribution function, and with the expression
for the correlation tensor in the isotropic case., The computation of )
moments yields a system of Reynolds equations in which approximations usually
taken from considerations of dimensionality are made for a number of summands.
Here this is the result of approximations for the forces in the distribution
function equation. Closure of the system of equations for the moments
reduces to solving the equation for the distribution function. And it is
shown that the integral nature of the transport (direct diffusion) is asso-
ciated with consideration of third order momentsa‘ A number of examples
of flows fixing the values of the empirical constants are reviewed. A
system of equations is obtained for use in cdnsidering a flow with strong

anisotropy of turbulent transport.

Generally known results, based on the inclusion of equations for second

moments and considerations of dimensionality for the expression for the

* Numbers in the margin indicate pagination in the foreign text.
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corresponding summands in the equation for the turbulent energy balance in
terms of intensity and turbulence scale, are contained in the investigations
made by A. N. Kolmogorov, L. Prandtl, J. Rotta, and others (a bibliography

and summary of these works can be found in [1]).

A number of papers have attempted to describe the turbulent transport
process by using kinetic equations [2], as well as by using an analogy to
the neutron transport and radiation processes [3,4]. Reference [4] lists

the corresponding bibliography.

1. Turbulent transport model. It is assumed that a multipoint dis~

tribution function, which can characterize the velocity pulsation field,
N . .
.f( ) (q., I T, %) (i =1, ..., N}, where q; are coordinates, p, are
formation pulses, T is the temperature,?& is the admixture concentration,
satlsfles the equatlon of contlnulty.
- a/‘”’ -0 [P @ (m] 0'{ ar (N)] o [dx (N)] '
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(only a flow with small changes in temperature and concentrations will be
considered, such that the magnitudes with density pulsation should be ig-
nored everywhere except for the summand with the acceleration of gravity

[1l).

The simplest assumption possible is made with respect to the formation
scales: at every point in the flow the size of the moles can be charac-
terized by a single scale value proportional to the integral correlation
scale with which the magnitude of the mixing length is associated, and
defined as the distance characterizing the loss of correlation between

the original and final positions of the mole [5].

The simultaneous dlstrlbutlon function at n points
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One of the basic assumptions concerns the form of the expression for
the force acting on the mole. It is assumed that this force comprises two
parts: the first, Fi = (dpi / dt)l, describes the hydrodynamic interaction
of the mole with the flow; thanks to the existence of the relative velocity,
and is in form similar to that for the force acting on a sphere with radius
L; the second is connected with the action of fluctuations in pressure on
the mole. This is a random force that depends on all the coordinates iﬁ
the field. Ye. A. Novikov used random forces to describe the turbulent
flow field in [6]. It was taken that fluctuations in pressure change quite
rapidly compared with change in the distribution function, and that the
force associated with their action has correlation time T. Then integration

of Eq. (1. 2) in the correlatlon time limits from =T to O ylelds [7].
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Here W(Ap) is the probablllty of pulse deviation by Ap. Since there
is no possibility of obtalnlng an exact solution by using qu (1.3), an
attempt will be made to use it to obtain expressions for single-point
and two-point distribution functions in terms of the parameters for an

inhomogeneous flow field.

(1)

Let us assume that f = f for n =1, and

?%‘L‘a%[mfhap [(dz{),f]“*ar[ f]+:x[ = (1.4)
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The following approximation is taken for the expression for the integral

in the right side

i \io—am W (Ap) d (Ap) = ‘f:
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Here f ‘is the local equlllbrlum ‘value of the distribution function.
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The considerations for this approximation are purely qualitative, and are

based on the fact that this approximation is widely used in the kinetic
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theory of gases, although the sense of the right side is different, as well /6L

as in what is completely an equilibrium case.

The relationship used on the basis of dimensionality considerations
is

i T=ALE“/. A : (1.5)

where A is an empirical constant, for T magnitudes, and this is customary.

This simplifies Eq. (1.4) considerably

8 [ 21} g () 1]+ o [+ ) = = G.6)

Certa:m relationships based on experimental data concerning the fric-
tion, heat exchange, and mass exchange processes for a body moving in a
fluid must be taken for the magnitudes Fi = (dpi / dt)l, dT/dt, and d%/dt.

In particular
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(1.7)
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Here the resisting force is approximated by an expression that is valid

for large values of the local Reynolds number (see [3,8] as well).

It would be desirable to reééfn7the integral nature of the solution
for the distribution functions f and f(z) in toto, but this can only be
done for the function f. The developed construction can be improved if

success can be had in obtaining a more satisfactory presentation for f and

£(2)

2. Equations; Multiplying Eq. (1.6) by Q(u, T, X), and integrating

over the entire variable space u, T, 'X, we obtaln the transport equation

= <p><0>¢3,—,—<p> <u«0>—-<p><ﬁx -5;,-—> 0 ><‘”' 29
d aQ § (2.1)
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Assuﬁigg‘Q =1, ua, ua?9 uduB’ T, u T, T ‘X, u&x ‘X,, we can obtain

equations for the mean magnitudes and second moments (summing not done in
terms of o and B). Then it is taken that the magnitude <p> is a constant.
Strictly speaking, this corresponds to constancy in flow for the value of
the energy of the pulsation motion. When the entire flow is considered,

including the regions near the solid wall, or the free boundary, where
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this condition is violated, it becomes necessary to introduce the magnitude
"for the density of the turbulent state of the flow" <p>, which is associated
with the coefficient of intermittence, and what then must be considered

is a flow consisting of two conditions for the medium: laminar, and turbu-

lent.

The equation of continuity is

i Ouy
oz, (2.2)

The equation of motion for the mean velocity values is

6(P)
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The equatlons for the components of the tensor of the Reynoles stresses
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The energy ¢ equatlon is
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The equgtions for the components of the vecbor for the turbulent heat
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The equatlon for the 1nten51ty of temperature fluctuations is
K3 C(T’
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No equations w111 be wrltten for the concentratlon field. Egs. (2.2)-
(2.7), (1.6), (1.5), and the scale equation (cited in the next section)
comprise a closed system. The third order moments contained in the second
order moments equation must be determined by using the solution for the

distribution function.




. 2 .
Let us take the expression ~'El/ <ua' uB'> for the magnitude
l l u, uB

3. Equation for scale L. An approximate equation for L can be obtained

by integrating and angle averaging the equation for the second rank correla-
tion tensor, just as Rotta [9] did. The only difference is that the original
equation and the approximate expressions for the third order moments in

this paper are based on Eq. (1.3) for the distribution function f( )

(a) (b)

This equation is multiplied by u, and uB , and integrated over the
entire variable space. The result of using the equation of motion at points
a and b, and the”equatioh of continuity, is to obtain the transport equation
in the following form. Let us introduce the following variables: the

dlstance between points a and b of the flow, [, and the coordlnates x;ab)a
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As will be seen, the scale is not a scalar magnitude in the general
case. But it is desirable to give further consideration to the simplest
case during the first approximatation consideration, when a number'of
simplifying assumptions are made (one of which is the introduction of but
one mean scale at a point). We will, therefore, proceed as follows. We
. . (a (b
write the equation for the sum <u‘ ) )>, integrate the equation at the

point (ab) with respect to the dlstance [ between points a and b, and with

respect to the angle, and take the mean value

Yy [Gul™ + <u"”>1 ~ W, | Lo=Lp=Lay

[4))




It is assumed that the latter summand, which depends on the pulsations

(a) ,(b)
ug

in pressure, is in the form ~ T <u' ">, and that it can be combined
with the summands corresponding to the dissipation. Moreover, we will assume

that
§<u, ] “”) dgd9~<u;z>L 2LE

} |
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The regult is the following approximate equation for L

i 4
L} i

3 (LE)+goL<w,‘>a -+ ) (LE)=

Al
o ) (OMC ‘(b)) ! dg dQ
=g [S«u(a) (b) ">~r<u,‘°) w®y (a)>) £ ]

(3.2)

L oE"3ay] 4 — 2048 L Cp'u"> [ <p>

Let us con51def the following, very simple, model for purposes of deter-
mining the form of the dependency of the third order moments for the inhomo-
geneous case. The principal role in the equation for f(z) is played by
pulsations in pressure, and the resisting forces can be ignored. Then the
case of the stationary field can be considered, for which the equation for
f(a) in coordinates Qk x(ab) has the form

)+ ) 8/ 32k 4 (1 — 5:”’)6/"’16& rl(F /‘”w . (3.3)

2)

In the homogeneous case fé is dependent only on { and satisfies the

equation

. u,‘k"’)fé).?’/ 9y = T F - 1)

We obtain the correction for the expression for the homogeneous case

by substltutlng the value f( 2) from Eq (3.3) in the expression for f(z)

/(s)—-},- "_T(ug') : S‘b)\)af(i) /agk ‘]gr(uS?’ -h ff’)) af(,) / 0x5§'°’
Eo o : ""’f 1/’r(u5‘a)+u&b))a/(g)lax(ab) ) e, 9; (3.4)

' In this expression the parameters E, L, and <uﬁ>'must be considered as /67
functions of the coordinates. The following derivatives can be contained
in the right- sxde durlng dlfferentlatlon

‘aElaxk, 6L] 3.’12," uma <um> laxk 2




Assuming equality to zero of the "semiinvariants" (cumulants) [1] of
fourth and fifth orders, the fourth moments can be expressed in terms of the
second, and the fifth, which prove to be proportional to the third, should
be ignored in the approximation considered for weak inhomogeneity. Spe-
cifically

’
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After integration with respect to the distance between the points and
to the angle, the result is
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(3.5)

The magnitudes of the'constant ‘Yl and 'yz should be determined from
the experimental data. Substituting Eq. (3.5) in Eq. (3.2), we obtain the

final équation for the scale as

RSN
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This equation is in keeping with the scale equation obtained by Rotta
[9], who used a number of relationships and hypotheses for spectral functions
in its development. Here the equation is obtained by using distribution

functions.

L, The equations in the foregoing refer to a developed turbulent

flow, and do not take into consideration the processes associated with




molecular diffusion. Consideration of the flow in the region where viscosity
has a substantial effect requires correct computation of third moments,

because these latter play a determinant role in this region.

The basis for the determiﬁation of the magnitudes of the third moments
should be the solution of the equation for the distribution function. There
is no possibility of structuring a solution for f in simple form, so we
structure an approximate solution that will properly consider the fundamental
characteristic of the turbulent transport process; the generation of moles,
and their propagation over considerable distances. The effect of the re-
sistive forces will be ignored in the equation of the distribution function,
although the respective summands are not small, generally speaking, and we
will considér a plane flow in which the flow parameters depend solely on the

transverse coordinate. Then
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\‘ ,' a B - »
R R )
L (4.1)
ds

' ( ds
foexp [— § W]m

" * 7" B
g ds .
~-'f9exp [_S Tu "\] u,’
. © Y :

QSLI0

TR

w0 =

The equation of viscous shear is in the form

. 4 Py 19 73 A.d(ux) -1 P 1
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Computing‘fhé‘magnitudes
o Cuduyy = S(u#-— (ued) uyfdudivdu,
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we can be persuaded that Eq. (4.2) is satisfied once a direct substitution
is made. But viscous shear Eq. (4.3) describes the integral transport when
the mixing length is long, so diffusion of the direct type is equivalent

to the computation for the third order moment.

Let us here note further that approximations for forces acting on the




mole and adopted in the‘distribution function equation led to expressions
that were used for the summands containing pressure flucfuations, and were
introduced because of considerations of dimensionality and because of phys-
ical considerations. There is a difference in the summand characterizing

the dissipation of energy, for here the isotropic expression
*4a,LE (c, )
usually was used.

And the following expression too was obtained here

9iao L E"s Cutg'ug”

that is, the dissipation of energy for the componént of the kinetic energy
?

of the pulsation motion, <ux2> for example, is proportional to this magni-

'
tude ~ El/2<ux%>; and cannot be taken as equal to one~third of the total

magnitude of dissipation of energy.

5. The steady plane flow of a turbulent flow. Let us consider a

steady isothermic plane flow, again for the case when the flow parameters
change in the direction of the y axis only. Flow velocity, U, is directed

along the x axis.

Layer of constant viscous shear. This flow can be observed'at a distance

from the wall (viscosity effect can be ignored). Third order moments equal

zero., Let us introduce the dimensionless magnitudes
, . , ;
: ~U+.=’ Uv.. . .’/+ = Yuuv !

We obtain as a result OB __1 %-3Aa0A)
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These equations yield
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What follows from this 1atter is
iL*-‘By

and from the flrst

3

aA) lny -_Co+n11ny:v.

Co + 3aoB /’(

that is, the 1ogar1thm1c law for velocity distribution known for this case.
The value of the constant # = 0.40., We will also say that Bo = 0,40, and
that a = 0.345. Then aoA = 4/3 and A = 3.86. The relationships given

above will yield the following for these values of the constants
CE* =244 (u,*y =324, (u/=081 |

These values are in satisfactory concordance with the experimental

data [10].

.

Isotropic plane flow beyond a lattice. The equations are greatly sim-

plified for 1sotrop1c flow because
- U ’> = <uu"> = Ty = “lsE o

Viscous forces can be ignored, velocity U is constant, and we have

the expressions -

"' .dE E’/l3aa o dLE ;G‘E'/'aao :
u“?;'=?_f,ﬁéb ol =" ’
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Third order moments too have been ignored here. What follows from

these equations is the relationship for the L. G. Loytsyanskiy invariant [11]

. A ;____NELll(x-és)" , i

and since 1>— as should equal 1/5, a = 0.8.
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It is now easy to find the dependencies

VL~ﬁ,E~r%5
This corresponds to A. N. Kolmogorov's known results.

Flow in a wind tunnel. Here it is taken that scale L is constant,

that is is proportional to the dimensions of the cells in the lattice,

whereupon the equation [12] that follows is valid

CaB 3 [2\h AT L. Ol
"7?“-"_”"‘2‘(’3“) LB, A =10-1.2

Here ! is the longitudinal integral scale, that is, a magnitude that
is proportional to L (close to AL, because this value is included in the
index of the exponent). In this case the equation of the magnitude E

yields ' .
. dE' /_dt_ = — 3,/‘! f{oLﬁlE',"

Comparing these two relationships, we obtain the evaluation
which agrees with the value 3/4a0A = 1, taken previously.

6. Passage to the limit relationships of the mixing length theory.

A system of equations describes turbulent transport without the introduction
of an assumption as to the smallness of the magnitude of the mixing length,
L. L. Prandtl developed the mixing length theory on the basis of an analogy
- with molecﬁlar transport in a continuous medium mode when L is small compared
with the characteristic size of the problem. We will come to the model

of the mixing length theory if we take into consideration the fact that

when L = O the magnitudes T and <ui'uj'> (i#j) are small first order magni-
tudes, and that E is a finite magnitude. In orde{ to satisfy these condi-
tions, it must be taken that ao,* 0. All these conditions are contradictory
because in a turbulent flow the magnitude <ux'uy'> is not small compared with

B, for example.

In the light of the conditions listed, the original equations (without




the viscosity computatlon) yield

ua'?y =23 E 2v'a (ua)/axa
ua'ug"y = —v' (0 uad | 0zp + 4 <uB> [ 0%4)
e (P> = — Koc, (TS [0z, '
v o= k' ’/ ALE'/’ P = v’/k_' =1

[

And the expression for the virtual viscosity becomes scalar.

If the passage to the limit, L * 0, is not completed, we will obtain
an expression for the Prandtl turbulence number, P', different from one.
Let us consider the special case of plane-parallel motion (without taking

into consideration viscous forces and the third order moment)

ooy . . . v e

, AL o
<ux uu = "'; (i + 3a04 / 4)E‘/' <uu 3) e dy L
"AL ) dc (T)

cP<T uu>'~f‘; (l+3aoA/8)E'/' (uu >

i

and for this case we have

S Ak Yeaed g
P'=—rwaa = |

for the values of constants adopted.

Contained in the equation are the constants as A, o Eo, Yl,Yz, from
which the values of o and A can be determined from the relationships that
follow from the equations, as we saw above. The others can be determined

by comparing them with the experimental data.

As will be seen from the very simple examples used, the system of
equations obtained makes it possible to describe known behavior patterns,
permits consideration of direct diffusion and the nonisotfopic behavior of
the components of the kinetic energy of pulsation motion, and the intro-
duction of nonisotropic eddy viscosity, which proves to be significant jn

many problems concerned with turbulent flow in a stratified medium.
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